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A nonlinear analysis of the interaction between a water wave and a floating ice
cover in river channels is presented. The one-dimensional weakly nonlinear equation
for shallow water wave propagation in a uniform channel with a floating ice cover
is derived. The ice cover is assumed to be a thin uniform elastic plate. The weakly
nonlinear equation is a fifth-order KdV equation. Analytical solutions of the nonlinear
periodic wave equation are obtained. These solutions show that the shape, wavelength
and celerity of the nonlinear waves depend on the wave amplitude. The wave celerity
is slightly smaller than the open water wave celerity. The wavelength decreases as the
wave amplitude increases. Based on these solutions the fracture of the ice cover is
analysed. The spacing between transverse cracks varies form 50 m to a few hundred
metres with the corresponding wave amplitude varying from 0.2 to 0.8 m, depending
on the thickness and strength of the cover. These results agree well with limited field
observations.

1. Introduction
The breakup of a river ice cover can generally be classified as a thermal breakup

or a mechanical breakup. In a thermal breakup the ice cover deteriorates and melts
in place with no significant movement. The physics of thermal breakup is well
understood (Shen & Chiang 1984). Mechanical breakup of a river ice cover is
due to the fragmentation of the floating cover by hydraulic and mechanical forces
associated with changes in river discharge and water level. Mechanical breakups can
be categorized into pre-frontal and frontal modes (Prowse & Demuth 1989). The
pre-frontal modes include the formation of longitudinal shore cracks and the breakup
of the ice cover into long sections of ice sheets (Beltaos 1990; Shulyakovskii 1972). No
significant longitudinal movement of ice cover occurs during the pre-frontal modes.
The frontal mode represents failure of the ice cover coincident with the surge wave
during the last stage of the breakup. Closely spaced transverse cracks are formed
under the influence of the wave, which often leads to cracking of ice sheets into
individual floes followed by severe ice runs and ice jams. In the last ten years,
significant progress has been made on the understanding of the dynamics of ice runs
and ice jams (Shen, Su & Liu 2000; Shen, Liu & Chen 2001). However, since a clear
understanding of the mechanics of river ice breakup is not available, predictions of
breakup and the associated ice jams still cannot be made. The lack of understanding
of the mechanics of river ice breakup is mainly due to the lack of understanding of



260 X. Xia and H. T. Shen

the formation of closely spaced transverse cracks under the action of river waves,
which is the key to the occurrence of breakup ice runs.

Wave–ice interaction has been studied extensively by sea ice researchers (e.g. Squire
et al. 1995; Wadhams 2000). These studies were mainly concerned with the interaction
of water waves with ice floes and the attenuation of waves with distance into the
ice pack. Each ice floe is considered as a floating raft. The water beneath the ice is
assumed to satisfy the Laplace equation together with a linearized kinematic boundary
condition at the mean water surface. Daly (1995) used a linear analysis to study the
interaction between river waves and ice covers, and suggested the possibility of the
formation of transverse cracks spaced at 10 m or less by waves in the gravity wave
range with small wave amplitude. This phenomenon has not been observed in the
field. Parkinson (1982) observed cracks spaced at 50 to 200 m apart formed across the
ice cover during the passage of a flood wave in the Liard-Mackenzie River, and the
broken ice front was moving at a speed approximately equal to that of the free-surface
surge wave. Gerard et al. (1984) and Prowse (1986) made similar observations. In this
paper, a nonlinear analysis of the interaction of a floating river ice cover with shallow
water waves and the formation of closely spaced transverse cracks is presented.

2. Problem formulation
In an analysis of wave propagation in ice-covered channels Daly (1993) found two

ranges of five bands of wave celerity in the wavenumber spectrum. In the range
with longer wavelength, which is termed the quasi-open-channel range, the cover is
floating on the water surface at hydrostatic equilibrium. In the ice-influenced range,
the pressure underneath the cover deviates from hydrostatic, and effects of friction
and bed slopes can be neglected. For one-dimensional unsteady flow in a wide,
rectangular channel with a uniform ice cover, the following mass and momentum
conservation equations can be used for analysing wave–ice interaction:

∂d

∂t
+
∂(ud)

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ g

∂d

∂x
+

1

ρ

∂P ′

∂x
= 0, (2)

in which, x, t are space and time coordinates; u is flow velocity; d is flow depth
under the cover; g is acceleration due to gravity; ρ is water density; and P is
pressure deviation from the hydrostatic pressure. The compressibility of water is not
considered, since it is not important when the ice cover is separated from the banks
after the formation of longitudinal cracks. The ice cover is assumed to be a thin
homogeneous elastic plate. The equation of motion of the cover can be written as
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in which E is elastic modulus of ice; I is moment of inertia of the ice cover cross-
section; ν is Poisson’s ratio; N is a constant compressive axial force per unit width
along the cover; ρi is the ice density; and η is the ice cover thickness.

It is convenient to let u = u0 + u′; d = d0 + d′, where u0 and d0 are constants that
correspond to uniform flow conditions. Equations (1) to (3) can then be written as
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By substituting (6) into (5) and introducing the coordinate transformation x′ = x− u0t
and t′ = t, these equations can be reduced to the following dimensionless equations:
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in which the dimensionless variables and parameters are scaled by a horizontal length
scale L0, a vertical scale d0, and the wave amplitude a as
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in which the characteristic length of the cover
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and c=
√
gd0. Equations (7) and (8) are similar to the well-known Boussinesq equa-

tions (Debnath 1994; Mei 1983), albeit more complicated. Daly’s (1995) linear analysis
showed that waves with a wavelength of 2πl and amplitude of O(0.1 m) could cause
transverse cracks to form. In such a case, the order of the ice stiffness parameter
δ = (l/L0)

4 = (1/2π)4 is 0.001, and the order of the small-amplitude parameter ε is
0.01 or larger. The nonlinear terms in (7) and (8) are comparable to the ice stiffness
term, and could not be neglected. The linear analysis is therefore not valid.

3. Nonlinear analysis
Consider a solution of (7) and (8) correct to the first order in ε and δ in the form

u∗ = d∗ + εQ1 + δQ2 + O(ε2 + δ2), (10)

where Q1 and Q2 are functions of d∗ and its derivatives. The following equations for
d∗ and u∗ can be obtained:
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By dropping the prime in (9b) and neglecting terms of order ε2, εδ and δ2, or higher,
(11) in dimensional form becomes

1
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The first two terms, dt + cdx, describe the wave evolution at the shallow-water wave
speed. The third term with coefficient 3c/2d0 represents a nonlinear wave steepening.
The rest of the terms are dispersion terms due to ice cover bending, inertia of the ice
cover, and the axial force. Thus, (13) is a balance between time evolution, nonlinearity
and dispersion. Equation (13), is a fifth-order Korteweg–de Vries equation, in the same
form as the equation for weakly non-local solitary water waves (Grimshaw & Joshi
1995; Hunter & Scheurle 1988; Karpman 1998). However, in (13), the third-order
terms are smaller than the fifth-order terms, i.e. ice cover bending dominates over the
inertial and axial force terms.

We now seek a steady progressive wave solution of (13) travelling downstream. In
the reference frame ζ so that d = d(ζ), ζ = x−Ut, equation (13) gives the following
equation after integration with respect to ζ:
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and A is an integration constant. The solution of (14) with negligible cover inertia and
axial force is available from the authors or the Journal of Fluid Mechanics Editorial
office.

3.1. Solutions

By neglecting the ice cover inertia and axial force terms in (14) the following explicit
solution can be obtained:
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and the wave speed U and wavelength Lw are
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where cn is the Jacobian elliptic function, and K is the complete elliptic integral of the
first kind. Figure 1 shows the variation of the wave profile as given by (15). Equation
(16) shows that the wave speed is slightly reduced from the shallow water wave speed
in open channels, which is consistent with the field observations of Parkinson (1982).
Equations (16) and (17) show that both the wave speed and wavelength decrease as
the wave amplitude increases.

A cnoidal wave solution in the following form can be obtained for the complete
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Figure 1. Dimensionless wave profile under ice cover for the first half-wavelength.

equation (14):
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where a, b, g, α, κ, and U are given by the following five equations:
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β a (m) b (m) k α g U/c− 1

0.0079 0.323 0.01134 0.7126 0.16524 0.3164 −0.01146
0.0130 0.340 0.0192 0.7160 0.16660 0.3062 −0.01245
0.3130 0.330 0.2362 0.8382 0.18593 0.00047 −0.0678

Table 1. Solution of the complete equation for Lw = 381.7 m.
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where E(κ) is the complete elliptic integral of the second kind; κ is the modulus of
the elliptic function, which varies between 1 and 0; and U is the wave speed. The
wave amplitude is determined by a and b. The wavelength Lw is calculated from

Lw

l
=

2

α
K(κ). (21)

It is of interest to note that when κ→ 0, α approaches a constant, and both a and

b→ 0. The solution approaches that of linear theory. When κ →
√

1
2
, both a and

b approach positive infinity, and the solution for the complete equation approaches
that of the simplified equation. Using a case with wavelength Lw = 381.7 m, Fr = 0.3,
d0 = 3 m, E = 10 GPa, and η = 1 m as an example, the solution of the complete
equation is shown in table 1 for different values of β. Figure 2 shows the profiles of
these nonlinear waves. The case with β = 0 in figure 2 corresponds to the solution of
the simplified equation. Figure 2 also shows that when only ice inertia is considered, i.e.
the case with β = 0.0079, the completed solution is almost identical to the simplified
solution.

3.2. Ice cover fracture

The maximum bending stress in the ice cover occurs at the top or bottom, i.e.
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E
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∂2d
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do (m) E (Gpa) η (m) l (m) amin (m) U (m s−1) Lwmax (m)

5 1 0.2 2.87 0.475 6.934 65.98
5 1 0.5 5.71 0.645 6.910 121.54
5 1 1.0 9.60 0.812 6.886 192.93
5 10 0.2 5.11 0.220 6.969 142.15
5 10 0.5 10.15 0.299 6.958 261.85
5 10 1.0 17.08 0.377 6.947 415.65
3 1 0.2 2.87 0.401 5.350 60.60
3 1 0.5 5.71 0.544 5.324 111.62
3 1 1.0 9.60 0.685 5.298 177.19
3 10 0.2 5.11 0.186 5.388 130.55
3 10 0.5 10.15 0.252 5.376 240.48
3 10 1.0 17.08 0.318 5.365 381.73

Table 2. Values for amin and corresponding wave characteristics.
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Figure 2. Nonlinear wave profiles.

The maximum bending stress produced by the propagating waves can be obtained
from (15) for the simplified case as

Smax =
E

1− ν2

η

l2
a3/2

√
35do

. (22)

For an ice cover with a maximum flexural strength Sb, the minimum wave amplitude
that can cause ice cover fracture is

amin =

(
Sb(1− ν2)

Eη
l2
√

35do

)2/3

. (23)

Equations (16), (17) and (23) can be used to determine amin and corresponding values
of U and Lw , which is the maximum wavelength corresponding to amin. Table 2 gives
sample values for different ice cover conditions with Sb = 0.6 Mpa. The ranges of
wave amplitude, wave speed and wavelength are consistent with the limited field
observations available (Parkinson 1982; Gerard et al. 1984; Prowse 1986).
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β Lw (m) a (m) b (m) k α g U/c− 1

0 381.7 0.3180 0 0.7071 0.1659 0.3333 −0.0106
0.013 387.5 0.3230 0.0186 0.7162 0.1645 0.3056 −0.0120
0.113 414.9 0.4310 0.1836 0.7827 0.1617 0.1309 −0.0237
0.213 440.8 0.5300 0.3598 0.8325 0.1601 0.0162 −0.0349
0.313 442.4 0.5787 0.4793 0.8432 0.1616 −0.0478 −0.0504

Table 3. Solutions of the complete equation for breakup ice cover.
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Figure 3. Examples of wave profiles that can fracture the ice cover.

For the solution of the complete equation, the maximum bending stress Smax in the
ice cover can be obtained from (18) as
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E
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Gmax(κ), (24)

where Gmax(κ) is the maximum value of G(x, κ) in the x-coordinate, and
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The maximum value of G(x, κ) is difficult to obtain explicitly. It can be obtained
numerically by varying the value of x over one wavelength. If the value of Smax
is found to be larger than the maximum flexural strength Sb, then the ice cover
will fracture. The longest wavelength, (Lw)max, that will cause fracture can be then
determined from (21).

Using the parameters of the last case in table 2, with Fr = 0.3, wave conditions
that can cause the cover to fracture are shown in table 3. The profiles of these waves
are shown in figure 3. This figure shows that if the axial force is large enough, it can
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change the shape of the wave. Furthermore, the wave height required to cause the ice
cover to fracture is also reduced.

4. Summary
A nonlinear analysis was carried out on the interaction of shallow water waves

with a floating ice cover in a uniform channel, and the fracture of the cover under
the influence of the wave. The analysis shows that a weakly nonlinear wave equation
is a fifth-order Korteweg–de Vries (KdV) equation. The nonlinear wave solutions in
the form of cnoidal waves are obtained. The explicit solution for a simplified form
of the equation, which neglects the effects of ice cover inertia and axial force, shows
that the celerity of the wave is slightly reduced by the existence of the cover. The
minimum waveheight that is required to fracture the ice cover is typically in the range
of 0.2 to 0.8 m, depending on the cover thickness and strength. The corresponding
wavelength, i.e. the distance between the transverse cracks that were generated by the
propagating waves varies from 50 to 400 m. For a typical ice cover condition during
the spring breakup period, the range is in the order of 50 to 150 m. These results are
consistent with the limited field observations. The solution of the complete equation
showed that the ice cover inertia effect is negligible. However, a large axial force
acting along the ice cover could reduce the wave height that is required to fracture
the cover.

This study was partially supported by the US Army Research Office through Grant
No. DAAG55-98-1-0520, and the US Army Cold Regions Research and Engineering
Laboratory through Contract No. DACA89-94-K-0017.
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